Incorporating Air and Water Pollution into the National Income and Product Accounts

Maureen L. Cropper University of Maryland, College Park, RFF

Yongjoon Park University of Massachusetts, Amherst

> Rachel Carson Lecture March 7, 2024

Overview

- Why air and water emissions accounts are important
- Accounts for Local Air Pollutants
 - Muller, Mendelsohn, and Nordhaus Approach
 - EPA's Estimates of Damage per Ton of Pollutant
- Accounts for Greenhouse Gases
- Accounts for Water Pollution Emissions
- Conclusion

Why Are Pollution Satellite Accounts Important?

- Researchers have shown that the externalities associated with air and water pollution are significant—as are the expenditures undertaken to reduce pollution flows
- Examining trends in both emissions and expenditures to reduce emissions important for understanding how the nation is progressing
 - Trends in emissions will be more useful if the damages associated with emissions can be monetized
- I will focus on the damage associated with air and water pollution, with an emphasis on air pollution

Measuring Emissions to Air by Emitting Sector

- The first step in measuring damages is measuring emissions to air by emitting sector.
- The next slide shows the format of the <u>UN Core Air Emissions</u> account, including both local and global pollutants
- Local air pollutants (e.g., CO, NOx, SO2, PM2.5) shown above the line, are provided by sector in EPA's National Emissions Inventory (NEI), every three years.
- <u>Greenhouse gas emissions (e.g., CO2, methane)</u>, shown below the line, are provided by EPA annually, by sector.

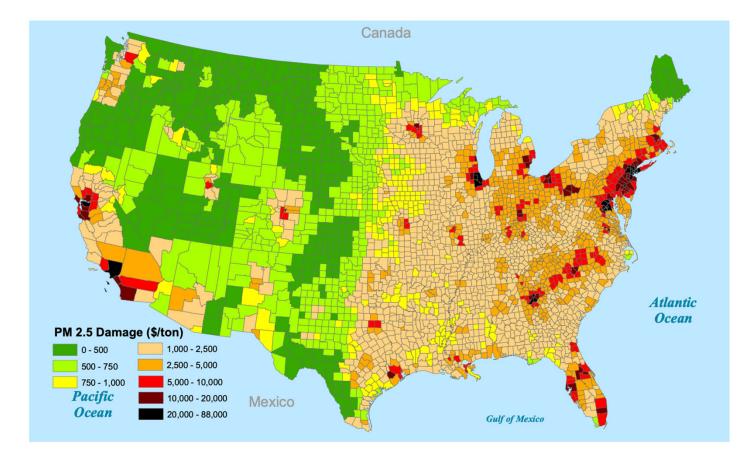
Core Air Emissions Account (tons)

	Industries						Households		
	Agriculture	Mining	Manufacturing	Transport	Other	Transport	Heating	Other	
Panel A: Local Pollu	tion Pollutar	nts							
NOx	69.4	6.0	37.9	259.5	89.0	38.0	12.1	1.3	
со	41.0	2.5	123.8	46.2	66.2	329.1	51.2	5.7	
SO2	2.7	0.4	28.0	62.4	8.1	0.4	0.4	0.1	
PM2.5	7.0	0.1	8.5	9.3	4.4	6.0	2.8	0.5	
NH3	107.9		1.7	0.2	0.9	2.3	11.4	1.2	
VOC	5.2	6.5	40.0	16.4	27.2	34.5	29.4	3.2	
Panel B: Greenhous	e Gases								
Carbon Dioxide	10,610.3	2,602.2	41,434.4	27,957.0	82,402.4	18,920.5	17,542.2	1,949.1	
Methane	492.0	34.1	15.8	0.8	21.9	2.4	15.5	1.7	
N2O	23.7		3.5	0.8	2.6	1.0	0.2	0.1	
F-GHGs			0.3		0.4				
Sulphur Hexafluoride									
Nitrogen Triflouride									

Going from Emissions to Monetized Damages: Local Air Pollutants

- <u>Use air quality modeling to translate emissions into ambient air quality</u>.
 - Estimate change in ambient air quality due to current emissions
 - Will require emissions by detailed geographic location
- <u>Estimate impacts of</u> the spatially disaggregated <u>changes in</u> <u>ambient air quality on health, agricultural output, other endpoints</u>
- Monetize the changes in health outcomes and other endpoints
- Trace damages back to pollution emissions by sector and pollutant

Muller, Mendelsohn, and Nordhaus Approach


Muller, Mendelsohn and Nordhaus (AER, 2011)

- Used the 2002 NEI and an integrated assessment model to estimate the Gross Economic Damages (GED) from air pollution, by sector
- Provided guidance for future efforts to determine the marginal value of damages by pollutant and sector
- Made clear the key pollution outcomes that drive estimates of air pollution damages, viz.
 - The impacts of PM2.5 and Ozone on adult mortality and how deaths are valued

Muller, Mendelsohn and Nordhaus Approach

- Using the NEI, ran an air quality model to reproduce baseline concentrations of ambient PM2.5 and Ozone throughout the US
- Estimated a source-receptor matrix linking a marginal increase in emissions of each of 6 pollutants (PM2.5, PM10, SO2, NOx, NH3, VOCs) on ambient PM2.5, Ozone
 - Impact depends on the county and stack height at which the pollutant is emitted
 - Done for each of 6 pollutants x 3110 counties x 3 stack heights
- Evaluate increase in PM2.5, Ozone in each county on health and other endpoints using damage functions
- Value marginal damages

Marginal Damages from Ground Level PM2.5

Muller, Mendelsohn and Nordhaus Estimates of GED

Sector	GED	GED/VA
Agriculture and forestry	32.0	0.38
Utilities	62.6	0.34
Transportation	23.2	0.10
Administrative, waste management, and remediation services	10.7	0.08
Construction	14.7	0.03
Arts, entertainment, and recreation	2.2	0.03
Accommodation and food services	4.2	0.02
Mining	3.3	0.02
Manufacturing	26.4	0.01
Other services	1.0	0.01
Wholesale trade	1.2	0.00
Retail trade	1.7	0.00
Information	0.0	0.00
Finance and insurance	0.0	0.00
Real estate services	0.0	0.00
Professional, scientific, and technical services	0.0	0.00
Management	0.0	0.00
Educational services	0.0	0.00
Health care services	0.7	0.00
Total all sectors	184.0	

TABLE 1—GROSS EXTERNAL DAMAGES AND GED/VA RATIO BY SECTOR

Note: GED in \$ billion per year, 2000 prices.

MMN Damage Estimates by Pollutant for EGUs

Pollutant/welfare endpoint							
	SO_2	PM _{2.5}	\mathbf{PM}_{10}	NO _x	VOC	NH_3	Total
Mortality	44.20	3.53	0.00	2.75	0.03	0.09	50.6
Morbidity	1.64	0.03	0.12	0.18	0.00	0.00	1.97
Agriculture	0.00	0.00	0.00	0.37	0.00	0.00	0.37
Timber	0.00	0.00	0.00	0.02	0.00	0.00	0.02
Materials	0.06	0.00	0.00	0.00	0.00	0.00	0.06
Visibility	0.22	0.01	0.02	0.02	0.00	0.00	0.26
Recreation	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Total	46.12	3.57	0.14	3.34	0.03	0.09	53.4

TABLE 4—GED FOR COAL-FIRED POWER PLANTS BY POLLUTANT AND TYPE OF DAMAGE

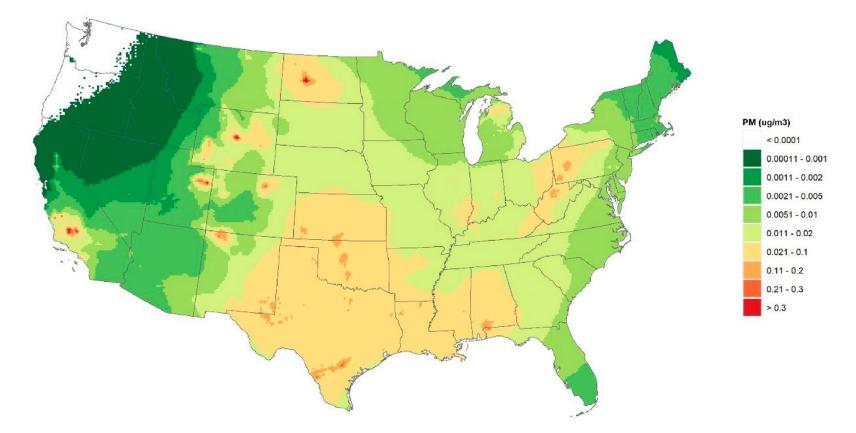
Note: GED in \$ billion per year, 2000 prices.

How Is Premature Mortality Valued?

- MMN estimates of GED use EPA's Value per Statistical Life (VSL)
- VSL = amount that people would pay to reduce their risk of death by a small amount, aggregated over risks that sum to one statistical life
 - If each of 10,000 people would pay \$200 to reduce their risk of death by .0001, The VSL = 10,000 x \$200 = \$2 million
- VSL estimated by compensation for risk of death on the job using hedonic labor market studies
 - VSL in 2000 dollars = \$6.3 million

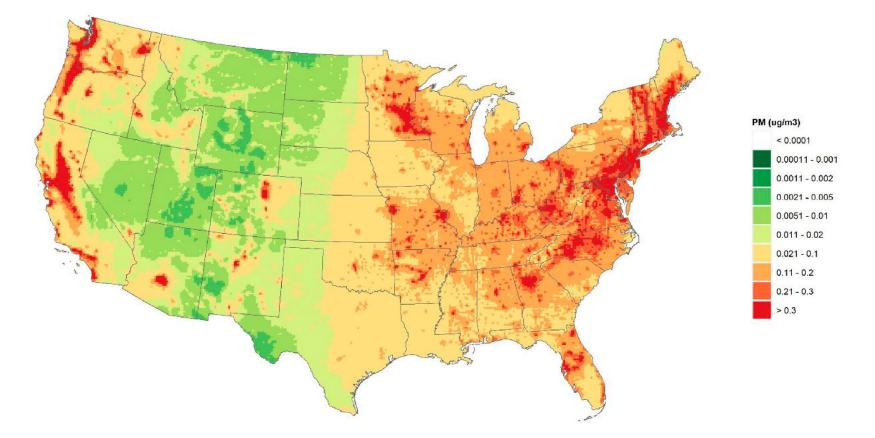
Sensitivity of GED Results to Mortality Valuation

- MMN's base case takes EPA's VSL but uses the <u>Value per Life Year</u> <u>Saved</u> – the VSL is divided by discounted remaining life expectancy of a 40-year-old to generate the VSLY
 - Value of premature deaths = life years lost x VSLY
- <u>Using VSLY</u>: total <u>GED = \$184 billion (1.8% of 2002 GDP)</u>
- <u>Using VSL:</u> total <u>GED = \$460 billion</u> (4.4% of 2002 GDP)
- Results also sensitive to exposure response functions for PM2.5, O3


EPA's Estimates of Damage per Ton of Pollutant

EPA's Estimates of Damage per Ton of Emissions

- In 2022 EPA released estimates of cost per ton of pollutant for 21 sectors and 5 pollutants using the 2017 emissions inventory
- <u>Sector-based PM2.5 Benefit Per Ton Estimates | US EPA</u>
- Air quality modeling used to estimate source-receptor matrices for each sector-pollutant combination at a 12km x 12km resolution
- Impact of ambient PM2.5 and ozone on health estimated at a 12km x 12km resolution using BenMAP
- Mortality effects of PM2.5 and Ozone constitute 98% of monetized damages, using a 2016 VSL of \$10.7 million


Impact on Ambient PM2.5 of Oil and Gas Extraction

Oil and Natural Gas: Annual Mean PM2.5

Impact on Ambient PM2.5 from Woodburning Stoves

Residential Wood: Annual Mean PM2.5

Average Pollution Damage per Ton, By Sector

	Р	M2.5-Relate	Ozone-Related Damages			
Sector	Directly- emitted PM2.5	SO2	NOx	NH3	NOx	VOC
Oil and Natural Gas	\$97,900	\$19,400	\$8,080		\$44,900	\$1,680
Oil and Natural Gas Transmis	\$138,000	\$29,800	\$13,700	\$73,400	\$61,200	\$7,490
Pulp and Paper	\$145,000	\$39,300	\$11,200	\$51,100	\$75,700	\$2,130
Refineries	\$368,000	\$50,900	\$23,100	\$112,200	\$57,500	\$11,500
Residential Woodstoves	\$473,000	\$34,600	\$33,100	\$200,000	\$39,000	\$12,300
Synthetic Organic Chemical	\$140,000	\$42,800	\$17,000	\$71,200	\$70,300	\$5,540
Taconite Mining	\$60,600	\$32,800	\$9,230		\$45,800	\$29,600
Electricity Generating Units	\$137,000	\$73,000	\$6,400		\$111,000	

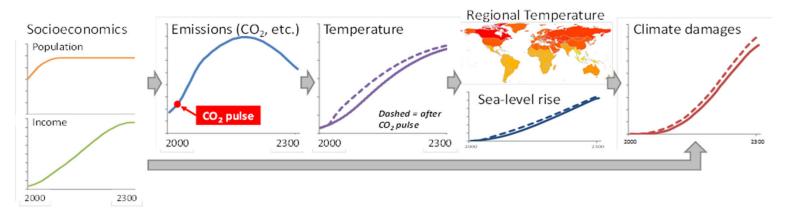
Average Pollution Damage per Ton, By Sector

	Р	M2.5-Relate	Ozone-Related Damages			
Sector	Directly- emitted PM2.5	SO2	NOx	NH3	NOx	VOC
Brick Kilns	\$227,000	\$44,000	\$26,900	\$130,000	\$78,800	\$10,700
Cement Kilns	\$157,000	\$42,300	\$14,600	\$63,900	\$68,900	\$16,900
Coke Ovens	\$281,000	\$53,500	\$25,600		\$61,500	\$33,400
Ferroalloy Facilities	\$151,000	\$45,300	\$15,600		\$95,900	\$7,230
Industrial Boilers	\$192,000	\$42,300	\$15,200	\$85,600	\$64,800	\$13,200
Integrated Iron & Steel	\$384,000	\$53,700	\$23,600	\$190,000	\$69,900	\$13,300
Internal Combustion Engines	\$166,000	\$38,700	\$10,700	\$75,300	\$54,800	\$8,510
Iron and Steel Foundries	\$261,000	\$54,300	\$24,000		\$84,700	\$7,410

Can EPA's Approach Be Used to Compute Satellite Accounts for Local Air Pollution?

- Issues with the National Emissions Inventory
 - Frequency
 - Residential v. territorial nature of emissions
 - EPA emissions will need to match NIPA sectoral descriptions
- Valuation Issues
 - Approaches described value marginal impacts of emissions
 - Would focus on mortality impacts of PM2.5 and Ozone
 - EPA's current VSL is based on hedonic labor market studies—so an acceptable market price—but details need to be worked out

Accounts for Greenhouse Gases

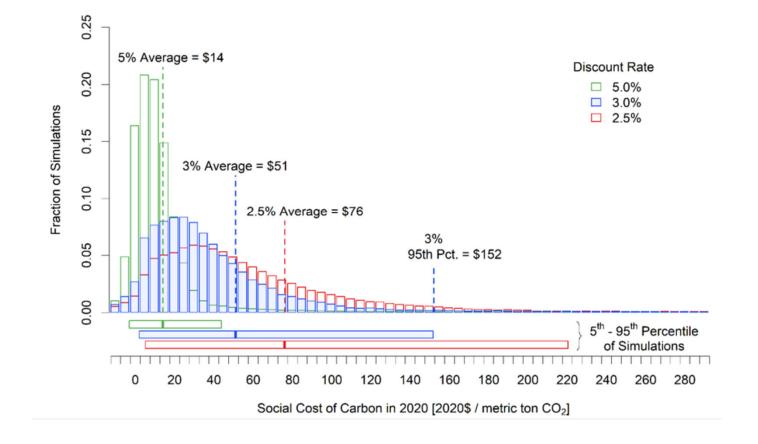

Satellite Accounts for Greenhouse Gases (GHGs)

- EPA reports emissions of GHGs by sector, annually
 - BEA has constructed pilot supply and use tables for 2017
- Can these be valued using EPA's Social Cost of Carbon (SCC)?
 - The SCC measures the present value of net damages from emitting an addition ton of CO2 in a particular year, including the value of:
 - Changes in net agricultural productivity
 - Energy use
 - Human health
 - Property damage from increased flood risk

2017 Supply and Use Table for GHGs (Million Tons)

Sector	Total GWP	Sector	Total GWP
Agriculture	611.83	Professional	15.79
Mining	300.02	Management	9.79
Utilities	2152.34	Administrative	180.61
Construction	46.49	Education	7
Manufacturing	1028.84	Health Care	22.85
Wholesale	67.66	Entertainment	2.54
Retail	91.91	Hospitality	34.64
Transportation	657.49	Other Services	18.88
Information	8.1	Government	33.25
Finance	9.61	Households	1108.21
Real Estate	24.03	Total Supply	6431.87

The 4 Steps of SCC Estimation


- 1. Projections of future population & GDP generate a CO_2 emissions path
- 2. CO₂ emissions path leads to predictions of mean global temperature change
- 3. Temperature change leads to damages, which are monetized and aggregated
- 4. Damages persist for many decades: discounting is used to sum them into a single present value

This 4-step procedure is done with both baseline emissions and with a small additional amount (a pulse) of CO₂ emissions in a particular year.
SCC is the per-ton difference in present value of damages due to the pulse.

US Government Calculation of the SCC

- Inter-agency Working Group began in 2009 and continued through 2016, until disbanded by Trump in 2017
- Combined results from 3 IAMs: DICE, FUND and PAGE
 - Using 5 equally weighted socio-economic scenarios
 - Using a common distribution over climate sensitivity
 - Preserving uncertainty in damage (and other) parameters in FUND and PAGE
- 150,000 Monte Carlo runs for each of 3 discount rates
 - 2.5%, 3.0%, 5.0%
 - Next slide shows distribution of results for all discount rates

Frequency Distribution of Interim SCC Estimates in 2020\$

How to Improve Estimates of the SCC? (2017 NRC Report)

- "Unbundle" SCC estimation into 4 modules
 - Socioeconomic Module
 - Climate Module
 - Damages Module
 - Discounting Module
- Each module to be developed based on expertise within the relevant disciplines
- Uncertainty at each stage to be quantified and combined to generate a distribution of SCC values

Recommendations of the NRC Report

- **Statistical methods and expert elicitation** should be used to project distributions of GDP, population growth and emissions into the future
- Link between emissions and climate should use a simple Earth system model that satisfies well-defined diagnostic tests
- **Damage calculations** should improve and update existing damage functions, drawing on recent scientific literature
- Future damages should be discounted at a rate reflecting rate of economic growth underlying damage projections
 - Ramsey discounting will achieve this and allow correlation between climate damages and the discount rate

Improvements in Recent EPA SCC Estimates

EPA's November 2022 release of SCC estimates satisfies all NRC recommendations:

 Uses RFF's probability distributions over socio-economic pathways (Nature 2022) and the FAiR Earth Systems model

Incorporates 3 new sets of damages:

- RFF's GIVE model (Nature 2022) Captures Mortality, Agriculture, Energy, Coastal Damages
- The Climate Impact Lab's DSCIM model Captures Mortality, Agriculture, Energy, Coastal Damage, Labor supply
- Meta-analysis of damages by Howard and Sterner (2017)

USEPA SCC Estimates, December 2023

Social Cost of CO2, 2020 - 2050 (in 2020 dollars per metric tons of CO2) Near-Term Ramsey Discount Rate = 2%

	Damage Module					
Emission Year	DSCIM	GIVE	Meta-Analysis			
2020	190	190	200			
2030	230	220	240			
2040	280	250	270			
2050	330	290	310			

SCC Issues from a National Accounting Perspective

- Can damages to other countries be included in the SCC?
 - Exports are included in the National Income and Product Accounts
 - The SCC measures damages from exports of pollution
- Valuation Approaches Used in EPA's SCC
 - Mortality is valued using EPA's VSL, based on hedonic wage studies. It is transferred to other countries using an income elasticity of 1.
 - Additional energy consumption, agricultural impacts and sea level rise valued using market prices

Accounts for Water Pollution Emissions

Physical supply table for gross releases of substances to water

					Flows with		
					the rest of		
	Generation of	of gross relea	ses to water	Accumulation	the world	Flows from	
				Emissions		the	
	Sewerage	Other		from fixed		environmen	
	Industry	Industries	Households	assets		t	Total supply
Emissions receive	Emissions received by the environment						
BOD/COD	5,594	11,998	2,712				20,304
Suspended solids							
Heavy metals							
Phosphorus	836	1,587	533				2,956
Nitrogen	10,033	47,258	1,908				59,199

Availability of Water Pollution Emissions Data

Point Source Emissions Data

National Pollutant Discharge Elimination System (NPDES) covers emissions from point sources, including:

- Animal feeding operations; Fish farms; Pesticide permitting
- Industrial operations, including mining, oil and gas drilling
- Municipal wastewater; Storm water Discharges
- Data are reported in Discharge Monitoring Reports

□Non-Point Source Data

• NPS data (e.g. agricultural runoff) usually modeled using HAWQS

EPA's Modeling of Ambient Water Pollution

- HAWQS Model
 - Models river, stream water quality at the watershed level
 - Simulates effects of crops, soils, and land uses on sediment, pathogens, nutrients, BOD, DO and pesticides
 - Possible for point source loads to be added by the user
 - Provides estimates of:
 - Dissolved oxygen
 - Total suspended solids
 - BOD
 - Nitrogen
 - Phosphorus
 - Fecal coliform

EPA's Valuation of Water Pollution Damages

- Possible benefit categories to value:
 - Impacts on housing values
 - Recreation benefits
 - Non-use values
- BenSPLASH
 - Quantifies and monetizes water quality improvements
 - Six pollutants—DO, Fecal Coliform, N, P, BOD, TSS—combined into a water quality index (WQI)
 - Meta-regression of stated preference valuation studies are used to value the WQI

Conclusions

- Sufficient data exist for Air Emissions Satellite Accounts
 - Definitely for GHGs
 - Also for local air pollutants, although frequency an issue
 - Both must be adjusted to meet sectors used by BEA
- Should be able to monetize air pollution damages
 - Using EPA's current approaches for damage per ton of local pollutants
 - Using the Social Cost of Carbon for CO2
- Accounts for water emissions possible but monetization of damages still in the future